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Abstract: 
The minimum volume ellipsoid (MVE) method is a powerful algorithm for detecting multivariate outliers. We 
report here extensions to the method that facilitate its use when variance-covariances matrices may be singular and 
when outliers can be checked to determine whether they are caused by measurement error or a truly anomalous 
observation. Before applying MVE, we perform a principal-components analysis and retain only those eigenvectors 
with positive eigenvalues. To facilitate the investigation of outliers, we rank them from the highest distance score to 
the lowest. In our application, the highest scores are almost inevitably erroneous measurements that should be 
corrected, whereas the lowest scores arise from slight departures from multivariate normality and are not removed. 
Elements of this approach are applicable to many other sets of multivariate data. 
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Introduction 
Outlier detection is a crucial step in data analysis, because of the disproportion influence the 
outliers can have on the statistics; a single outlier can either obscure a real effect or introduce a 
nonexistent effect. Outlier detection in univariate samples is a common practice and can be 
carried out straightforwardly by visual inspection of the data or by statistical tests using order 
statistics. Outlier detection is less straightforward in two-dimensional spaces, because visual 
inspection is less effective and the order statistics are lacking. In higher-dimensional spaces, the 
problem is even more difficult. Traditional multivariate outlier-detection methods are based on 
the calculation of the generalized squared (Mahalanobis) distances for each data point. 
Mahalanobis distances are in essence weighted Euclidean distances; the distance of each point 
from the center of the distribution is weighted by the inverse of the sample variance-covariance 
matrix. Unfortunately, outliers greatly inflate the covariance matrix and can therefore effectively 
mask their own existence. 
 
To counter this masking problem, Rousseeuw (1985) introduced the robust minimum volume 
ellipsoid (MVE) method for detection of outliers in multidimensional data. Subsets of 
approximately 50% of the observations are examined to find the subset that minimizes the 
volume occupied by the data. The best subset (smallest volume) is then used to calculate the 
covariance matrix and the Mahalanobis distances to all the data points. An appropriate cut-off 
value is then estimated, and the observations with distances that exceed that cut-off are declared 
to be outliers. To minimize computation time, Rousseeuw and Leroy (1987) proposed a 
resampling algorithm in which subsamples of p+1 observations (p is the number of variables), 
the minimum to determine an ellipsoid in p-dimensional space, are initially drawn. The 
algorithm is described in various publications (Rousseeuw & Leroy 1987; Rousseeuw & van 
Zomeren 1990a; Jackson & Chen 2004). 
 
A serious problem is that both the traditional multivariate and the MVE approach require 
inversion of the covariance matrix. Therefore, neither method can be applied to samples with 
singular covariance matrices. We encountered this problem frequently; with our data, the Fortran 
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program MINVOL (Rousseeuw 1990) as well as the SAS implementation of MVE (SAS 
Institute Inc. 1999) returned prematurely as a result. 
 
In many applications, the original samples or some representation of them is still available. In 
such cases, inspection of outlier samples may be useful. For example, an anomalous individual 
may be useful or interesting in its own right. Perhaps more likely is that the measurements taken 
from the sample are simply in error and can be corrected. On the other hand, real samples are 
very unlikely to have precisely the multivariate normal distribution that these methods assume. 
Merely discarding each observation flagged as an outlier may force -the distribution into a near-
normal state that is not justified. Reexamination of outlier material allows determination of 
which observations are caused by measurement errors and retention of those that are not. 
 
Here, we describe our Java implementation of the MVE method, which deals with several of 
these issues. We provide a straightforward method for dealing with singular covariance matrices 
and facilitate reexamination of the original samples by sorting the outliers by their Mahalanobis 
distances. 

Procedure Description 
Our data sets were generated in a large project on the evolution of shape and vein patterns in 
Drosophila wings (Houle et al. 2003). We use a semi-automated system for detecting vein 
intersections. A digital image of a Drosophila wing is obtained; two starting points are supplied 
by the user, and a program then fits B-splines to the vein pattern. Twelve intersections of these 
veins are routinely used for our data analysis (Figure 1, top image). The result is 12 × 2 
dimensions (x and y coordinates) = 24 measurements for each wing. We analyze these data in the 
framework of geometric morphometrics (Dryden & Mardia 1998), where the spatial positions of 
landmarks are of primary interest, rather than derived measures such as lengths or areas. The first 
step in a geometric morphometric analysis is to align the sets of coordinates. As a result, four 
degrees of freedom are lost, two from translating the set of coordinates to a common centroid 
location, and one each from rescaling the coordinates to a common size and rotating the array to 
maximize the fit. We use a modified generalized Procrustes least squares algorithm for alignment 
(Rohlf & Slice 1990; Rohlf 2002b). 
 
Although our automated system is generally fairly accurate, the splining program sometimes 
fails to produce a good estimate of wing form. In some cases, the problem is operator error, but 
in others, subtle properties of the image mislead the fitting algorithm. Consequently, all the 
images must be checked for accuracy. We initially examined the fit to each image, but we have 
obtained images of over 300,000 wings in the past few years, so the time burden is considerable. 
We have therefore replaced exhaustive checking with automated outlier detection. 
 
Outliers in the data are detected with the MVE module (van der Linde 2004b). The loss of 
degrees of freedom due to the alignment of landmarks means that the variance-covariance 
matrices of even the largest data sets will be singular. We therefore perform a principal-
components analysis before outlier detection and score the observations on the eigenvectors with 
positive eigenvalues. These variates are then subjected to the MVE algorithm. The Mahalanobis 
distance of each detected outliers is retained, and these are sorted from largest to smallest. The 
outlier observations are then inspected by a human observer (Figure 1, lower three images) and 
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corrected if necessary with the 
digitizing program tpsDig 
(Rohlf 2002a). Checking pro-
ceeds from the largest outliers 
to the smallest. Commonly a 
large group of observations are 
correctly splined but fall slight-
ly farther from the distribution 
than expected under normality. 
Once the observer checking 
finds that the overwhelming 
majority of remaining images 
are in this category, checking is 
suspended, so additional time is 
saved in large data sets. 
Observations that remain ano-
malous after errors are removed 
can either be removed from the 
data set or retained at the 
discretion of the user. 
 
For our geometric morpheme-
tric data, the whole outlier-
detection procedure must 
usually be repeated two or three 
times before no new correctable 
outliers are detected, because 

Figure 1: Wings with superimposed 
landmark points (white dots).  The 
number at the bottom right in each 
image is the Mahalanobis distance 
for that wing. All four images were 
considered outliers by the PCA-MVE 
module, but the top wing shows the 
landmarks at their correct locations. 
The Mahalanobis distance is just 
slightly larger than the cut-off 
threshold. We interpret this 
individual as a "biological outlier.” 
The lower three wings all contain 
misplaced landmarks. The second 
wing only has one misplaced 
landmark (12). Almost every 
landmark is misplaced on the third 
wing, yet the Mahalanobis distance is 
less than that of the fourth wing 
because the relative locations of the 
landmarks are roughly correct. All 
wings are from Drosophila simulans.
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the alignment of wings by a least-squares criterion can itself mask outliers. A robust alignment 
algorithm that might solve this problem does exist (Rohlf and Slice 1990), but currently no 
software is available to implement it for large data sets (D. Slice, pers. comm.). In general, the 
robust nature of the MVE algorithm should obviate the need for iterative outlier detection for 
most data sets. 
 
Our approach is implemented in several Java classes based on Sun’s Java™ 2 SDK, Standard 
Edition, version 1.4.2 (Sun Microsystems Inc. 1992--2004). The classes are available as executa-
ble jar files from the website of the first author (van der Linde 2004b), as is a stand-alone version 
of the MVE procedure (van der Linde 2004a). This combined PCA-MVE method requires 
approximately 15 seconds on an Intel® 2.8 GHz processor with 448 MB of RAM for a typical 
dataset of about 100 individuals, but processing time increases linearly with increasing number 
of individuals. 

Discussion 
Our procedure for detecting outliers in multivariate data sets by the MVE method effectively 
eliminates the problems associated with singular variance-covariance matrices. In addition, the 
return of a ranked list of outliers facilitates error checking and helps to emphasize that outlier 
detection is a somewhat arbitrary process. When the underlying data are still available, as in our 
case, the data can themselves be checked and an informed decision made about the disposition of 
each flagged observation. The validity of the outliers cannot always be checked against the raw 
data, but our implementation always indicates which cases should be viewed with the most 
caution. 
 
In MVE the best ellipsoid could be missed because of the random sampling of the data set, so 
some outliers might be missed (Cook & Hawkins 1990) or some valid points labeled as outliers. 
In practice, the number of subsamples examined ensures that the best subset is always close to 
the actual best MVE, so the discrepancies will be small and only individuals very close to the 
optimal cutoff value will be missed. The implementation of MVE in SAS (SAS Institute Inc. 
1999) masks this random effect by seeding the pseudo-random number generator with the same 
seed every time. The random aspect in the method will always remain a point of concern, and 
outliers close to the edge of the ellipsoid should be treated cautiously. 
 
A more serious issue is the assumption of multivariate normality, which may often be false. 
Slight departures from normality may either increase or decrease the proportion of observations 
declared outliers. Reinterpretations of familiar data sets, such as the infamous stack-loss data 
(Cook & Hawkins 1990; Rousseeuw & van Zomeren 1990a, b) or the example used by Croux 
and Haesbroeck (2002) turn on this issue. 
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